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Abstract
Widespread school closures occurred during the COVID-19 pandemic. Because closures are costly and
damaging, many jurisdictions have since reopened schools with control measures in place. Early evidence
indicated that schools were low risk and children were unlikely to be very infectious, but it is becoming
clear that children and youth can acquire and transmit COVID-19 in school settings and that transmission
clusters and outbreaks can be large. We describe the contrasting literature on school transmission, and
argue that the apparent discrepancy can be reconciled by heterogeneity, or “overdispersion” in
transmission, with many exposures yielding little to no risk of onward transmission, but some unfortunate
exposures causing sizeable onward transmission. In addition, respiratory viral loads are as high in
children and youth as in adults, pre- and asymptomatic transmission occur, and the possibility of aerosol
transmission has been established. We use a stochastic individual-based model to find the implications of
these combined observations for cluster sizes and control measures. We consider both individual and
environment/activity contributions to the transmission rate, as both are known to contribute to variability
in transmission. We find that even small heterogeneities in these contributions result in highly variable
transmission cluster sizes in the classroom setting, with clusters ranging from 1 to 20 individuals in a
class of 25. None of the mitigation protocols we modeled, initiated by a positive test in a symptomatic
individual, are able to prevent large transmission clusters unless the transmission rate is low (in which
case large clusters do not occur in any case). Among the measures we modeled, only rapid universal
monitoring (for example by regular, onsite, pooled testing) accomplished this prevention. We suggest
approaches and the rationale for mitigating these “unfortunate events”, even if they are expected to be
rare.

Introduction
Coronavirus disease 2019 (COVID-19) is a global pandemic caused by SARS-CoV-2, a newly emerged
respiratory virus. While COVID-19 can be severe especially among the elderly, its impact on children and
youth is relatively mild, with a very low fatality rate among children aged 0-19 years [1] and low levels of
hospitalization and severe illness compared to adults. Children also comprise a lower portion of reported
cases than they do of the general population in many settings, though they can get COVID-19 and can (at
low rates) suffer complications [2]. To control the pandemic, many jurisdictions implemented widespread
distancing measures including school closures, and partly as a result, despite the pandemic’s global reach
with over 40M cases worldwide [3] at the time of writing, there remains considerable uncertainty about
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the role of children and of schools in the transmission of COVID-19. A range of approaches to mitigating
transmission in schools, in the context of circulating COVID-19 in the broader community, are being
deployed as schools reopen for the fall and winter in many areas.

School closures prevent transmission by preventing contact among students and teachers; they also
prevent onward transmission to family and friends. But the social costs of closures are too great for
closures to be a feasible long-term strategy. School closures take a severe toll, often in ways that
exacerbate inequality, disproportionately affecting children from marginalized groups [4]. Digital poverty
and parents’ limited availability to help pose difficulties with distance learning [5]. School closures
impact physical and mental health as schools play a role in healthy eating, with school closures
heightening food insecurity [6]. Disruption of social relationships and extracurricular activities impact
mental health and time spent online may increase cyber-bullying [5, 7, 8]. Schools are a safe haven and
safety net for children at risk of, or experiencing, domestic abuse, and the impacts of these are severe in
both short and long terms [9]. So it is crucial to understand how much and by what route transmission
occurs in the classroom environment, both so we can (i) accurately weigh the costs of school opening in
terms of COVID-19 transmission against the immense social costs of school closure, (ii) determine which
interventions are most effective in limiting transmission in the classroom environment.

A key area of uncertainty is just how transmissible COVID-19 is by students in the classroom
environment. There are a number of studies following contacts of infected individuals known to have
attended schools. Frequently, no or few new infections are observed, though there are exceptions. In
Ireland in March 2020, there were no confirmed transmissions among contacts of 3 students and 3 staff
who were believed to be infectious; contacts included 924 children and 101 adults [10]. In Australia,
contact tracing of 1448 contacts of 12 children and 15 adults with COVID-19 in 10 early childhood
education settings found just 18 secondary cases. However, there was one early childhood setting
outbreak in which an infected adult is thought to have infected 6 additional adults and 6-7 children
leading to an overall attack rate of 35.1% [11]. In France, Fontanet et al. describe a cluster of COVID-19
in a high school setting in which the overall infection attack rate was 40.9% (in a retrospective serological
study) [12], but in another study in the same setting, 3 students with COVID-19 had attended three
different schools and there were no secondary cases; the authors concluded that there was no clear
evidence of transmission in schools [13]. The European Centre for Disease Prevention and Control
reviewed COVID-19 in children and schools [4] (Aug. 6, 2020); several of the 15 reporting countries
surveyed reported clusters in educational settings; these were limited in size and were considered
“exceptional” events. A review up to 11 May 2020 concluded that children are not likely to be primary
drivers of the COVID-19 pandemic, but that they likely could transmit the virus [14]. These limited data
detailing transmission in schools, together with the severe impacts that school closures have, especially in
light of the exacerbation of existing inequality, make a good case for reopening schools with measures in
place to minimize transmission.

However, the reason there have been so few transmission events may be more related to the lack of
opportunity, rather than transmission being especially unlikely in school environments or among children.
In most settings described above, community COVID-19 transmission was low and the spring-summer
2020 school session was short; there was little opportunity for exposure and transmission in schools. In
many jurisdictions, strong measures were put in place that limited exposures in schools by reducing
community prevalence and contact with school settings. For example, Sweden initially kept high schools
open only on a distance basis, as did many Canadian provinces in June 2020; Denmark’s elementary
schools opened with distanced and smaller classrooms; South Korea shut down whole schools upon one
student testing positive [15, 16]. In British Columbia, Canada, high schools remained closed and
elementary school students optionally attended for 1-2 days per week. There were often only 5–6 students
in classrooms intended for 20–30; summer reopening lasted for 3.5 weeks at a time when there were only
on average 2-4 new reported COVID-19 cases per million population per day.
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In contrast to the literature cited above, there have been reports of larger outbreaks and broader
transmission among school-age children, particularly in jurisdictions with more community transmission
at the time. In Georgia, USA, an overnight camp attended by 597 residents had a large outbreak resulting
in 76% positivity among the 344 tested attendees [17]. The overall attack rate was 50% among those age
6-10 years and 44% overall, despite efforts to follow most components of the Centre for Disease
Control’s risk reduction recommendations (though masks were not worn by campers and there was
“vigorous singing and cheering”). 26% of 153 cases for whom there was symptom data reported not
having had symptoms. In Israel, all school classes reopened on 17 May 2020, with hygiene, face masks,
health checks and distancing measures in place. A high school registered two unlinked cases ten days
later; subsequently, school-wide testing found 153 students and 25 staff members who tested positive for
COVID-19 with an additional 87 relatives and friends ultimately infected as well [18]. Cases were most
concentrated in 7-9th grades with 17-30% of those year groups infected), compared to 1.6-4.5% among
10th-12th grade students. Nearly half of the 7-9th grade cases were asymptomatic. Classes were crowded
and due to a heat wave, air conditioning was used and students were exempted from wearing masks. The
age distribution of COVID-19 cases in Jerusalem also shifted, reflecting a higher portion of 10-19 year
olds [18]. In Trois Rivières, Québec, despite physical distancing and other measures, 9 of 11 students in
an elementary class contracted COVID-19 after a student was infected in the community [19]. Also in
Québec, 27 confirmed cases were found at a day camp [20], and subsequently caused nearly 20 secondary
cases among mainly siblings, family and friends [21]. An outbreak in a Chilean high school began shortly
after the first case in Chile was detected (March 3, 2020) [22]; by March 13 there were two confirmed
cases in the school, which was then placed in quarantine. By April 6, 52 school community members had
been confirmed positive and there had been one death. Serology in early May found antibody positivity
rates of 9.9% among students and 16.6% among staff (compared to much lower baseline rates in the
community) [22]. As of Sept. 25, 2020, 26 COVID-19 cases were linked to an outbreak in a Canadian
elementary school [23]. A survey of school outbreaks in Germany [24] found 48 of them between the
28th of January and the 31st of August, comprising only (0.5%) of all the outbreaks in the country in that
period. There were a total of 216 cases involved, almost half of which were adults (21 years or older).
Most of the outbreaks (38/48) had 5 or fewer cases, though the largest had 25. There was no data
available on the number of exposures without transmission, as an outbreak was defined by there being
more than one case detected.

At the population level, children have been infected with COVID-19, though at lower rates than adults.
In the EU/EEA and UK (as of 26 July 2020), only 4% of reported cases were among those under 18 (who
comprise approximately 16% of the population) [4, 25]. In a large Spanish study, seroprevalence in
children was under 3.1% compared to 6.2% among adults [26]. In a large Icelandic study of those at high
risk, 6.7% of children under 10 and 13.7% of those over 10 tested positive [27]. A Swiss population-level
study found only 1 of 123 children aged 5-9 year who tested positive for antibodies, suggesting a lower
rate than other age groups, and did not find a lower rate in those aged 10-19 years than in the general
population [28]. In the United States (where children comprise approximately 24% of the population
overall), as of October 15, 2020, 10.9% of overall COVID-19 cases were in children (typically 0-18 or 19
years) with high variability by state [2]. 12 states reported > 15% of cases among children aged 0-19 year
(0-20 in Tennessee) and two states reported under 5% of cases among children (typically 0-17 years in
those states); in the United States schools have been closed for most of the pandemic thus far [2]. In
Sweden, where elementary schools remained open, a study in May of 1100 individuals found that 4.4% of
children and teenagers and 6.7% of adults aged 20-64 had antibodies; the relatively higher rate in children
may suggest transmission in schools [29]. Recently, an analysis of over 575,000 contacts of 86,000 index
cases in two states in India found enhanced transmission in similar-aged pairs, an effect that was strongest
for those aged 0-14 and over 65 [30].

The two main public health concerns with respect to the transmission COVID-19 among children in
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schools are i) are we endangering children, teachers and staff and families by having children together in
the classroom setting? and ii) does the presence of children in the classroom accelerate the spread of the
virus through the broader community? The evidence above leaves the situation unclear. Large outbreaks
are possible and children can transmit COVID-19 to each other [30], suggesting sufficiently high
transmission rates for clusters to arise. On the other hand, there are many documented cases where there
is exposure with little or no transmission, suggesting that frequently transmission is very low. This
apparent inconsistency matches what we know about other COVID-19 transmission data: at one choir
practice an individual infected 52/60 participants [31]; at another there appears to be no transmission [10].
Occasionally multiple infections occur on a single flight [32]; but the majority of potential exposures on
planes lead to no transmission [33]. These considerations point to COVID-19 transmission being highly
heterogeneous, or “overdispersed”, a phenomenon with a building body of evidence [30, 34–36].

Here we use stochastic individual-based simulations to explore the implications of the above
observations for control of transmission clusters in classrooms. We consider two sources of transmission
heterogeneity: individual variation in infectiousness and variability in how effective a particular
environment/activity combination is for transmitting COVID-19. We include the potential for pre- and
a-symptomatic transmission and for transmission outside of an identified set of close contacts (via
aerosols and/or mixing outside of the group). We explore intervention protocols in the context of this
heterogeneity, comparing interventions focusing on groups of close contacts to those intervening at the
whole class level, and to those using wider regular testing.

Methods

Data
We use crowdsourced data available through Covid Écoles Québec [37] to inform our underlying
simulation framework. They collect reports of known COVID-19 exposures or clusters in educational
settings, along with the date, a date of last update, and the number of reported cases. In Figure 1 we show
the distribution of cluster sizes along with the type of school the cluster occurred in. The majority of
exposures have led to no additional reported cases, which is indicated by clusters of size 1 in this data set.
However, there is a tail of larger clusters. This data is consistent with a model of transmission where
infectiousness is variable and the distribution of secondary cases is overdispersed. We model two
contributing factors that are known to affect transmission [36]: the individual and the classroom/activity
combination. Individuals vary extensively in viral load both over their course of infection and from
individual to individual. In addition, talking, singing, shouting activities in crowded conditions in poor
ventilation are associated with large reported outbreaks and with data on aerosol and droplet generation.
We therefore model index cases of varying infectiousness arriving in classrooms whose additional
contribution to transmission is variable, stratifying the simulations according to the individual and
environment risks.

Disease Model
We model COVID-19 progression in an individual as having the states susceptible (S), exposed (E),
presymptomatic (P), symptomatic (Sym), and recovered (R). Individuals start in the susceptible state and
then transition to the exposed state when they are infected. Exposed individuals are not able to infect
others. Individuals transition from the exposed state to the presymptomatic state at which point they are
able to infect others, but have no symptoms. Individuals may either transition from presymptomatic to
symptomatic states (showing symptoms while remaining infectious) or directly to the recovered state
without ever showing symptoms. Symptomatic people eventually enter the recovered state, where they are
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Fig 1. Cluster sizes in Québec schools whose exposure was on or before Oct. 01, 2020, as of Oct. 11,
2020. The inset shows only those with 2 or more cases; the main plot shows all exposures. Most
exposures have not led to detected clusters; 33% of the exposures have led to at least one additional
detected case, and 20% to at least two additional detected cases.

no longer infectious. Presymptomatic or symptomatic individuals infect susceptibles at constant rate β
when they are together, where β may depend on the individuals involved, their exact state, their proximity
and the environment.

Individuals stay in the exposed state for the duration of the latent period, after which they become
presymptomatic. Latent periods are modeled as gamma-distributed with mean µ` and standard deviation
σ`. For each presymptomatic individual a gamma-distributed presymptomatic infectious period (PIP) and
a gamma-distributed infectious periods are generated (with means and standard deviations (µP , σP ) and
(µi, σi) respectively). With probability α they never show symptoms (and are asymptomatic); otherwise
symptoms appear after the PIP.

Rather than assuming that all students in the class are equally likely to transmit the infection to each
other, we model individual and contact group effects. We assume that the nclass students are broken into
smaller groups of ngroup students. We start with a base rate β of transmission which represents the rate of
transmission of from one infectious individual to another in the same group. Our default value for β is
0.003 transmissions per contact per hour (0.006 in environments with increased transmission). Another
source of variability is in the infectiousness of individuals. As discussed in the introduction, some
evidence indicates that certain individuals are superspreaders and so have atypically large β compared to
others. The most important instance of this is when the index case has high β. In order to capture this, we
model the index case as having a separate transmission rate β0 = findexβ where findex = 1 or 3,
depending on whether the index case has the same infectiousness or a higher infectiousness than others.
We also model reduced infectiousness of asymptomatic individuals. Their transmission rate is fasympβ
where we choose fasymp = 0.8. We explore the impact of these assumptions in the supporting
information. The final effect modifying transmission rate is to decrease it when the infectious person and
the susceptible person are in different contact groups. The effect is to multiply β by faero = 0.25. We
model the effect of these different heterogeneities multiplicatively, so that if, for example, the index case
is asymptomatic, the rate of transmission to a susceptible in another group is findexfasympfaeroβ. We
note that our maximum value of β (when both the environment and the infectiousness of the index case
are most conducive to transmission) is 0.018 transmissions per contact per hour. This is considerably
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smaller than the estimates of index β for widely-reported outbreaks in adults [38], by up to a factor of 30
for some events.

Table 1 lists the parameter values used in our simulations and provides supporting citations. We run
our simulations twice: once with the index case is symptomatic, and once when the index case is
asymptomatic, because this turns out to be a crucial factor in determining cluster size.

Table 1. Model Parameters.
Name Symbol value units citation

transmission rate β 0.003–0.018 per contact per hour [38]
latent period mean, std µ`, σ` 3, 1 days [39]

PIP mean, std µt, σt 2, 0.5 days [40]
infectious period mean, std µi σi 10, 5 days [41]
probability asymptomatic α 0.4 [13, 22]

asymptomatic fraction of infectivity fasymp 0.8
between-group fraction of infectivity faero 0.25

delay in testing tdelay 2 days

Classroom Structure
We model transmission in both an elementary school and a high school environment, taking the structures
from that in British Columbia when schools opened in September 2020. For the elementary school,
nclass = 25 students who spend 6 hours a day together, from Monday to Friday. All students except the
index case are susceptible. The index case turns infectious at the beginning of the day on Monday. We
assume that students are in 5 contact groups of ngroup = 5. We simulate for 50 days, and in most
simulations all students are recovered before the end of that period. For the high school, morning and
afternoon are structured differently. In the morning nclass = 30 students in groups of size ngroup = 5
meet for 2.5 hours Monday through Friday. In the afternoon nclass = 15 students meet in a distanced way
for 2.5 hours on Tuesday and Friday only. We model the distancing using contact groups of size 1. We
assume there is no overlap between the morning and afternoon classes except for the index case. Table 2
summarizes these classroom settings.

Table 2. Classroom Parameters.
Parameter Elementary School High School Morning High School Afternoon

hours per day 6 2.5 2.5
number students 25 30 15

meeting days Mon–Fri Mon–Fri Tue, Fri
students per group 5 5 1

Protocols
We consider four different protocols for what interventions are implemented when students become
symptomatic or receive a positive test result. In each protocol students who become symptomatic
immediately stop attending school and therefore cannot infect other students. (We do not model infection
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in the home environment, which is of course an important real-life practical consideration.) Every student
who is symptomatic is tested and learns their results tdelay = 2 days later. The value of the parameter
tdelay is important for the interventions, as the larger it is the more time pre- or asymptomatic students
(who were infected by the index case, but remain in the class) have to infect their classmates. The
protocols differ in which interventions are used after a student tests positive.

In the baseline protocol no further action is taken. Symptomatic student are remain home and cannot
infect other students, but the class continues to operate so that any other presymptomatic or asymptomatic
students may infect others.

In the contact protocol as soon as a symptomatic student receives a positive test result all the other
students in their group are isolated (sent home from the class) and no longer able to infect other students.
It is possible for any number of groups to be isolated, and under this protocol those decisions are made
independently.

In the two groups is an outbreak protocol, as in the contact model, groups with a student receiving a
positive test are isolated, but when two or more groups are detected, an outbreak is declared and all
students go into isolation, preventing any further transmission.

In the whole class protocol, when a symptomatic student receives a positive test result, all students
are isolated and further transmission is prevented.

Figure 2 shows an cluster in an elementary school classroom and the effect of the four different
protocols. Horizontal bars show the disease progression in students who are infected, with the index case
at the bottom. Vertical black arrows show who infects whom, and the vertical grey bars indicate where
different interventions take effect. In this particular simulation 20 out of 25 students are infected under
the baseline protocol. Under the contact protocol this number is reduced to 12. Under the two groups is
an outbreak protocol a single infection is prevented compared to the contact model by shutting the whole
class earlier. The whole class protocol spares no additional infections in this case.

Performance Measures
For each of the protocols we consider three different performance metrics. Total cluster size is the number
of students who are ultimately infected in class (or in both classes in the high school), including the index
case. Total disrupted is the total number of students who are either asked to isolate or are tested. A
student is included if they became symptomatic and had to isolate, if they were a member of a group that
was asked to isolate, or when their class was asked to isolate (or be tested). We did not explicitly simulate
the number of new clusters that a cluster seeds through out-of-class social contacts (siblings, parents,
teacher-teacher contact, after-school activities and so on). A measure of the risk of such “bridging”
interactions is asymptomatic student-days, the total number of student-days where a student is infectious,
but not asked to isolate. For the different protocols this number depends on the exact policy used. Under a
lax policy we assume that asymptomatic or presympomatic students are never told to isolate, and this
number is just the total number of student-days of infectiousness without symptoms. Under a strict policy
we assume that when a group or class is shut down all students in the group isolate until they recover or
receive a negative test result.

Results
For four different combinations of class room β and index case infectiousness we computed 1000 runs of
the simulation for both a symptomatic and an asymptomatic index case. We show the distributions of our
measures total cluster size, total disrupted, and asymptomatic student-days for a single introduced case in

7

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2020. ; https://doi.org/10.1101/2020.10.20.20216267doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20216267
http://creativecommons.org/licenses/by/4.0/


B
a

s
e

li
n

e
C

o
n

ta
c
t

T
w

o
 g

ro
u

p
s
 i
s
 a

n
 o

u
tb

re
a

k

0 5 10 15 20 25 30 35 40 45 50

days

W
h
o
le

 c
la

s
s

Exposed

Presymptomatic

Symptomatic

Recovered

Group Intervention

Class Intervention

Fig 2. The four protocols applied to a cluster where the index case is asymptomatic and has high
transmission and where the class has medium transmission. In all interventions, if individuals have not
already been identified through the relevant protocol, transmission stops when symptoms begin (red to
purple) as symptomatic individuals do not attend (or they leave when symptoms arise).
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an elementary school in our model. See the Supporting Information for the corresponding results for the
high school model.

Figure 3 shows the distribution of total cluster size. The first row shows results for when both the
transmission in the class is low (β = 0.003 transmissions per contact per hour) and the index case has the
same transmission rate as others (findex = 1). Cluster size is small with a symptomatic index case (no
transmission 73% of the time), but ranges from 1-5 individuals (median=2) if the index is asymptomatic.
This is because asymptomatic individuals have more time to expose others before recovering. None of the
protocols make a large difference to the cluster size in this setting. If the index case has a higher
infectiousness (findex = 3) but the room is still low risk (β = 0.003 transmissions per contact per hour)
(second row), again the cluster sizes are very small with a symptomatic index case (no transmission 53%
of the time), though the tail of rare events is longer. When the index case is asymptomatic, in the baseline
protocol the median cluster size is 5 and even in the whole class protocol, the median is reduced to 3.
This pattern continues; with a highly infectious index case in a higher-risk room (fourth row): in the
baseline protocol in which the main intervention is that symptomatic individuals do not attend, cluster
sizes range from 0 to over 20 students in a single classroom (median=4, sympt. index; median=12, asymp.
index) . The whole class protocol reduces the mean cluster size from 11.9 to 6.5 in the aysmptomatic case,
whereas the group and two group protocols reduce it to 8.3 and 7.5 students, respectively. Over all the
scenarios the whole class protocol reduced cluster sizes roughly in half, with the contact and two group
protocols doing a little worse.

Figure 4 shows the distribution of total disrupted for the four scenarios. The whole class model is the
most disruptive, as expected. When transmission is low in the class and the index case is low risk, simply
sending symptomatic individuals home accomplishes good cluster control and is least disruptive. In most
transmission risk scenarios in which the index case is symptomatic, the median cluster sizes are small;
however, there are rare high sizes in the long upper tail (for example, up to 20 students even with a
low-risk classroom and medium-risk, symptomatic index case). These clusters can linger, eventually
requiring each group to suffer disruption. In contrast, the whole-class model disrupts the whole class at
the first positive test, leading to high levels of disruption and surprisingly weak control of larger clusters.
This is particularly true when the index case is symptomatic.

Figure 5 shows the distribution of asymptomatic student-days in our four scenarios. By this measure,
the effectiveness of the whole-class intervention is strong, particularly in the most unfortunate scenarios
(high transmission index case and environment, and asymptomatic index). Here, the median numbers of
asymptomatic student-days are reduced from 14.7 to 9.2 in the lax case and 2.5 in the strict case. In the
low-transmission scenarios the whole-class intervention does remove the long tail (up to 50 student-days
of potential infectiousness in the other protocols, compared to a maximum of less than 10 student-days in
the whole-class model). Particularly in the “strict” case, the whole-class protocol achieves a dramatic
reduction in the force of infection that can arise from a cluster, both in the median and in the variability,
compared to the baseline protocol in which only symptomatic individuals cease attending. We note,
however, that the two-group protocol (in which there is a whole-class-level intervention once two
different contact groups have detected COVID-19 cases) achieves nearly the same level of reduction of
the potential force of infection from the cluster, with less overall disruption.

We obtain qualitatively similar results for high schools, in which the model is more complex – see
Figures A1 through A4 in the Supporting Information. However, because of the reduced duration of
attendance in the high school configurations we modeled, the cluster sizes are smaller and less variable
than they are in the elementary school model. The extent of disruption is higher due to larger numbers of
overall contacts. Importantly the much lower cluster sizes in the high school setting versus the elementary
point setting is due to how extensively the high school schedule has been restructured in response to the
pandemic. We illustrate this by showing results on cluster size for a high school with pre-COVID
structure: four 1.25 hour classes every day with largely different students in each. See Figure A4.
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Fig 3. Total cluster size. High variability in cluster sizes results from moderate variability in transmission.
Cluster size distributions in 8 scenarios ranging from a low infectiousness index case in a
low-transmission environment/activity (or class, top row) to an index case with 3 times the baseline
transmission rate in an class with twice the baseline rate (bottom row). Left: the index case is
symptomatic. Right: the index case is asymptomatic.
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the different protocols, according to the index and classroom’s transmission risk and whether the index
case is asymptomatic. A student is included if they became symptomatic and had to isolate, if they were a
member of a group that was asked to isolate or when their class was asked to isolate (or be tested).
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isolate.
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The mitigation protocols in Figure A1 make a disappointing impact on the total cluster size; variation
is driven much more by the transmission rate and whether the index case is asymptomatic. While the
whole-class model in which testing (even asymptomatic) class members is used to identify infections
rapidly reduces the number of student-days when infections go undetected, none of the protocols reduces
the cluster sizes so greatly that they would be a reliable approach for in-class clusters in the unfortunate
event where a highly infectious index arrives in a moderate-risk room. Fundamentally, this is because too
much transmission can occur in the pre-infectious period if the index is symptomatic, and/or too much
occurs before the first case has symptoms (if the index is asymptomatic). In most of our scenarios the
index case directly infects most of the students who become infected, and so the amount of time the index
case spends in class is key. If they are symptomatic, then the period of time they have to infect others is
just the pre-infectious period, with an average of 1 or 2 days. But if they are asymptomatic they have the
entire time until someone they infect becomes symptomatic to infect others.

Without closing schools down entirely, if we want to prevent large clusters from occurring altogether,
this leaves approaches to detect potential index cases before they show symptoms. Pooled testing,
wastewater monitoring and airflow monitoring have all been proposed with this aim [42, 43]. We
simulated introduced cases and resulting transmission under the baseline of no regular testing (with the
same baseline as above, symptomatic individuals going home) and compared this to weekly or every three
day testing or environmental monitoring covering all individuals in the class. The results for the total
cluster size are shown in Figure 6. Regular pooled or otherwise universal testing dramatically reduces the
sizes of even the most unfortunate clusters (infectious index, higher-risk room), for example from a
median of 12 to a median size of 3 if the index is asymptomatic. But even with regular pooled or
otherwise universal testing, testing in a matter of hours (e.g. onsite) has a substantially greater impact
than testing at a centralized laboratory (if that takes 2 days including shipping time).

Discussion
Data on COVID-19 transmission in schools is consistent with overdispersed transmission in which many
exposures – even a large majority – do not lead to clusters or outbreaks, but some do. Overdispersion in
transmission is known in respiratory infectious disease and in COVID-19 in particular [30, 36, 44–46].
SARS-CoV-2 viral loads are reported to vary by over 11 orders of magnitude, with meta-analysis not
finding significant differences in variability or viral load between children and adults [36], and with
variation over the infectious period. Activities and symptoms both affect droplet production, and
ventilation and distancing affect whether droplets or aerosols containing virions are likely to reach an
individual. Our model structure captures this complexity using two components contributing to the
transmission rate: host variability and a contribution from the environment and activity. In this
framework, even relatively low variation in transmissibility between individuals, combined with even
lower variation in the environment/activity’s contribution, explains widely variable cluster sizes.

Our study has some limitations. We have not extended our simulations beyond the classroom (or high
school classrooms) to simulate how each cluster may spread outwards via siblings, parents, teachers and
their contacts, other household interactions, friendship groups and the broader community. These factors
are complex and other models have explored them [47–51], some also finding that extensive testing or
successful test and trace systems are required to avoid schools amplifying COVID-19 transmission. We
focused instead on how heterogeneity in transmission, arising from individual and environment effects,
impacts the ability of mitigation measures to detect and control in-class transmission. We have a simple
model of contact in which a known, fixed group of contacts are at highest risk from a given index case.
This does not reflect the complex interactions in a classroom setting, but additional mixing or errors in
identifying precise who an index case was in close contact with can be modeled in the same way that we
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Fig 6. Cluster sizes are greatly reduced with regular universal (e.g. pooled) testing, particularly when that
testing is performed on site (in the model, in 2 hours, compared to an assumed 2-day time to result for
tests processed off site). Left: index case symptomatic. Right: index case asymptomatic. The baseline
scenario shows the cluster sizes without regular testing, compared to weekly (middle row) or every 3 days
(top row). Regular testing reduces the median cluster size from 4 or 12 (index symptomatic,
asymptomatic) to 3 if testing is done offsite, or 2 if it is performed rapidly on site. The fraction of clusters
of size > 5 is reduced from 80% to 20% (or 12% for rapid onsite testing) if the index is asymptomatic,
and from 48% to just 2-3% if the index is symptomatic.
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have modeled increased contribution of aerosol transmission (i.e. a risk of transmission outside the
identified group of close contacts). There remain many unknowns about the timing and nature of
COVID-19 transmission and we have used a simple model with constant infectiousness over time and
with variability in the pre-infectious, infectious and symptomatic periods consistent with current
knowledge of COVID-19 transmission.

In the particular context of schools, we find that interventions triggered by positive tests from
symptomatic individuals are relatively ineffective in mitigating “unfortunate events” – high-transmission
index cases in moderate (or higher)-transmission environments– even if everyone in the class is isolated
upon the first positive test. There is growing evidence that large clusters can happen in schools and that
children can transmit COVID-19 [30, 52]. This calls for preventive measures beyond protocols centred on
symptomatic testing. Up to autumn 2020, school closures were the primary mechanism for preventing
school transmission, and more broadly, widespread social distancing and non pharmaceutical
interventions were the widely used and widely effective in controlling community transmission
throughout spring 2020 [53–55]. If, instead, we are to maintain open schools, it is necessary to prevent
large school transmission clusters, even if they are expected to be rare. The expected benefit of preventing
large transmission clusters will naturally depend on the state of COVID-19 transmission in the
community, with larger clusters likely to be amplified and spread onwards where community transmission
is ongoing. Such settings will also have more school exposures, and the chance of an unfortunate
high-transmission introduction to a school is correspondingly higher, creating a viscious cycle.

Our analysis and modeling suggest three approaches to prevention. First, reducing community
transmission can play a large role; if exposures themselves are rare, the waiting time before a
high-transmission introduction is likely to be much longer than if community transmission leads to
frequent exposures. In a jurisdiction with 0.5% prevalence, where 75% of cases are symptomatic and not
attending (or have been alerted to their exposure), the probability that a high school with 1500 staff and
students has at least one case attending is still 85%. The more introductions happen in schools, the sooner
we can expect to be unlucky. This may account for reports of large school clusters in Israel, Sweden,
Chile [52] and some larger clusters in Québec [37], while countries with low overall levels found very low
risk of transmission from children in the same period [4]. Second, testing can be used not only to mitigate
one cluster in (e.g.) a classroom, but to prevent the next. We comment on two testing frameworks: testing
triggered by detection of a symptomatic individual, and regular testing or monitoring to detect any
COVID-19 in any individual, regardless of symptoms or known exposure (e.g. pooled testing). Rapid
regular universal monitoring is far superior in preventing large clusters to testing that is initiated upon
detection of a symptomatic case, even if a whole class is then tested soon afterward.

Finally, steps should be taken to control the environment’s contribution to the variation in
transmission rates (and therefore to cluster sizes). Indoor, crowded, loud, poorly ventilated environments
with singing, eating and dining are recognized to be comparatively high risk [36,38]. However, data could
now be gathered prospectively with a focus on schools: when there are exposures in classroom settings,
these could be linked to data on the room size, ventilation, whether windows were open, numbers of
students in the class and classroom organization, and then further linked to follow-up on cluster size. Less
is known about what may lead an individual to have a high viral load and to generate high volumes of
infectious droplets or aerosols, though symptomaticity (especially coughing) creates more droplets while
talking, singing and breathing produce aerosols whether an individual is symptomatic or not [36]. Here
too, data collection linking individual-level information with transmission via contact tracing and
follow-up could aid in identifying risk and preventing high-risk introductions.

Our results have focused on classroom settings in schools but could apply to other settings in which
people spend multiple hours per day with the same group of approximately 20–30 others, and have closest
contact with a subset of these individuals. The fact that our results for the case of BC high schools (one
in-person class per day with a hybrid class some afternoons) are very similar to the simpler contact
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structure in elementary schools indicates that the specific details of the contact patterns are less important
for the cluster sizes and roles of mitigation than the variation in transmission. Accordingly, many
workplaces may be well represented by our model and conclusions.
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A Supporting Information: Additional Simulation Results
Results for high schools. Here we provide the same results for high schools as we did for elementary
schools in the main text. For each of the conditions and protocols, Figure A1 shows total number of
infected students in the clusters, Figure A2 shows the number of students disrupted, and Figure A3 shows
the number of asymptomatic student-days. The effect of the protocols are more modest than in the
elementary schools, thought this is in large part because the high school structure we consider is already
quite good at restricting transmission. The key feature is that transmission is low in the afternoon class
because of social distancing (and it only meeting two days a week). The morning class is somewhat larger
than the elementary school class, but only meets for half the time.

For purposes of illustration we also compare our high school model with a model corresponding to a
pre-COVID structure in which students go to 4 different classes every day for 1.25 hours. Figure A4
shows the difference in cluster size between the two high school structures.

Alternative parameter choices. Figure A5 shows the total cluster sizes under different assumptions for
the pre-infectious period (PIP) which was mean 2 days (standard deviation 1 day) in the main text, the
relative infectiousness of asymptomatic individuals (0.8 times that of symptomatic individuals in the main
text) and the extent to which exposure is focused in the identified group of close contacts of an individual.
(We took equal numbers of simulations with each of the assumptions on β and the infectiousness of the
index case that we used in the main text.) Aerosol transmission and extended mixing in the classroom
would both serve to expose individuals who would not be identified as among the close contacts. If (1)
the PIP is short, (2) if individuals without symptoms transmit much less than those with symptoms and (3)
there is very limited aerosol transmission and very limited mixing outside a known group of close
contacts within the classroom, then cluster sizes remain small (though nonzero) no matter the intervention
protocol. Assumptions (1)-(3) are all strong and optimistic assumptions, and are not supported by data in
adults or by viral load data from asymptomatic individuals. However, if these assumptions did hold in
children then school transmission should be rare and would likely involve a high fraction of transmission
among teachers and other adult staff when it did occur. In Figure A5 we progress from top to bottom
panels, first assuming all three and then allowing for a longer PIP, higher asymptomatic transmission and
finally higher mixing/aerosol.
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Fig A1. High school total cluster sizes are smaller and less variable than those in elementary schools
because high schools are operating with one full in-person class every day and another, smaller and
distanced, class two afternoons per week. However, if the index case is asymptomatic and high-risk, even
this protocal can allow a cluster of 10 infections.
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Fig A2. Students disrupted in the high school model.
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Fig A3. Student-days of undetected (here, asymptomatic) infection in the high school protocols.
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Fig A4. Comparison of total number of infected students in a pre-COVID high school structure versus the
modified plan we have studied here.
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Fig A5. Cluster sizes vary according to whether assumptions (1)-(3) hold. We show this progressively,
with the pre-syptomatic infectious period (PIP) (1 day in the top panel, 2 days thereafter), the relative
infectiousness of those who do not develop symptoms (0.2 times the baseline in the top two panels or 0.8
thereafter) and the relative transmission rate to individuals outside the close group of contacts compared
to within (0.05 times the baseline in the top three panels, 0.25 in the fourth panel and 0.5 in the last panel).
Results in the main text correspond to the fourth panel whose parameters we believe are best
representative of current data. 26
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